

Overflow Losses

•Important to know:

- Quantity of losses
- Which part of the particle size distribution is lost

•Why:

- Production
- · Sand Quality
- Environment

TUDelft

TUDelft

5

10⁰ 10¹ 10² Particle Reynolds number Re_p [-]

xponent n [-]

Richardson & Zak

10³

TUDelft

TUDelft

Conclusion Camp model

- Shortcomings Camp approach:
 - Flowfield prescribed
 - In reality density currents
 - Influence bed shear stress on sedimentation
 - Inflow and outflow zone not modeled
 Variation in location not possible
- But gives a good estimate for overflow loss for optimal loading situation

TUDelft

1 DV Model

- 1 D in Vertical direction
 - no horizontal transport (possible erosion)
- Vertical Sediment Transport
 - Advection Diffusion Equation for n fractions
- Coupling of different fractions (hindered settling)
- Movable Bed (sedimentation)
- Numerical solution (Finite Volume/Difference Method)

TUDelft

Cycle production $P_{cycle} = \frac{m^3 unloaded}{cycle time} [m^3 / s]$		
hopper load	20,000 m3	
Sailing empty	300 min	
Loading	70 min	
Sailing loaded	330 min	
Unloading	15 min	
turning etc.	10 min	
Total	725 min	
Cycle. Prod	27.59 m3/min	
1 November 2016		56
		f UDelft

