

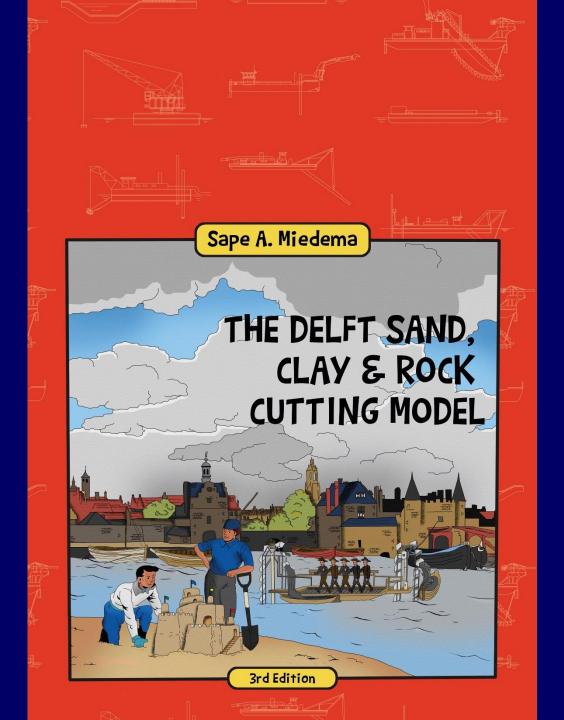
Delft University of Technology

Offshore & Dredging Engineering


DSCRC Model Production Estimating based on Specific Energy

Dr.ir. Sape A. Miedema Head of Studies MSc Offshore & Dredging Engineering & Marine Technology & Associate Professor of Dredging Engineering

Delft University of Technology



Delft University of Technology – Offshore & Dredging Engineering

Dredging A Way Of Life

© S.A.M



Cutting of Soil in Dredging

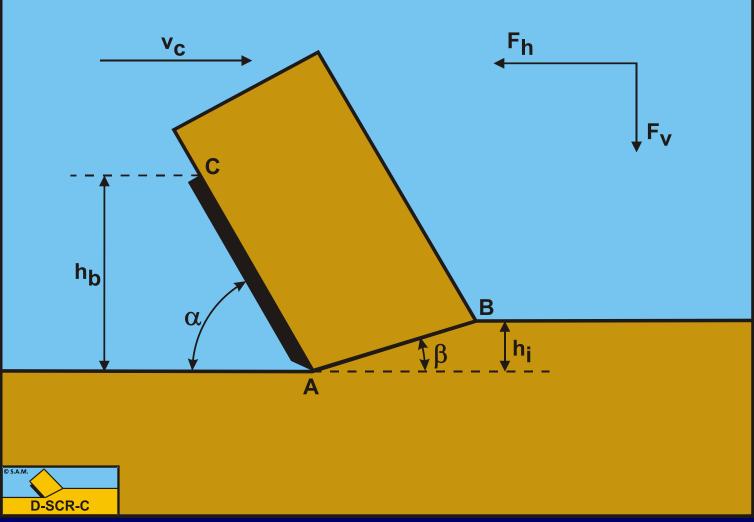
Faculty of 3mE - Dredging Engineering

Problem Definition:

How to determine the production of dredging and other excavating equipment.

Solution:

Based on the installed excavating/cutting power and the specific energy of the soil the production can be determined.


Specific Energy

Faculty of 3mE - Dredging Engineering

TUDEIFT Delft University of Technology Offshore & Dredging Engineering

Definitions 2D Cutting Process

Delft University of Technology

Specific Energy Work Based

$E_{sp} =$	Work	= Force · Distance					
	Volum e	Volum e					
=	$\mathbf{F}_{\mathbf{h}} \cdot \mathbf{x}$	= <u>F h</u> =	<u>k N</u>				
	$\mathbf{h}_{\mathbf{i}} \cdot \mathbf{w} \cdot \mathbf{x}$	h _i ∙ w	m ∙ m				
=	$\frac{kJ}{m^3} = \frac{kN}{m}$	$\frac{\cdot \mathbf{m}}{3} = \frac{\mathbf{k}}{\mathbf{m}}$	$\frac{N}{2} = k P a$				

Specific Energy Power Based

$$E_{sp} = \frac{W \text{ ork } / \text{ Unit of Time}}{V \text{ olume } / \text{ Unit of Time}} = \frac{C \text{ utting Power}}{V \text{ olume Flow}}$$
$$= \frac{F \text{ orce} \cdot V \text{ elocity}}{V \text{ olume Flow}} = \frac{F_{h} \cdot v_{c}}{h_{i} \cdot w \cdot v_{c}} = \frac{F_{h}}{h_{i} \cdot w}$$
$$= \frac{kJ / s}{m^{3} / s} = \frac{kW}{m^{3} / s} = \frac{kN \cdot m / s}{m^{3} / s} = \frac{kN}{m^{2}} = kPa$$

Production Specific Energy Based

Production =
$$\frac{\text{A vailable Cutting Power}}{\text{Specific Cutting Energy}}$$

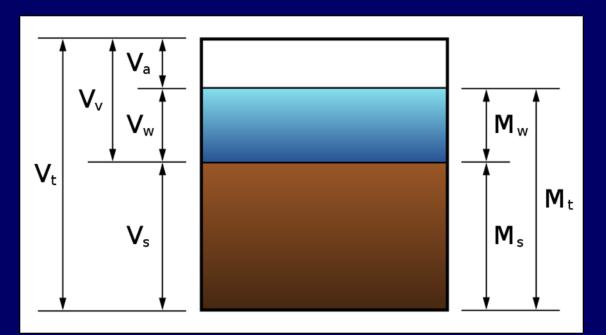
Q_c = $\frac{P_c}{E_{sp}} = \frac{kW}{kPa} = \frac{kN \cdot m/s}{kN/m^2} = \frac{m^3}{s}$

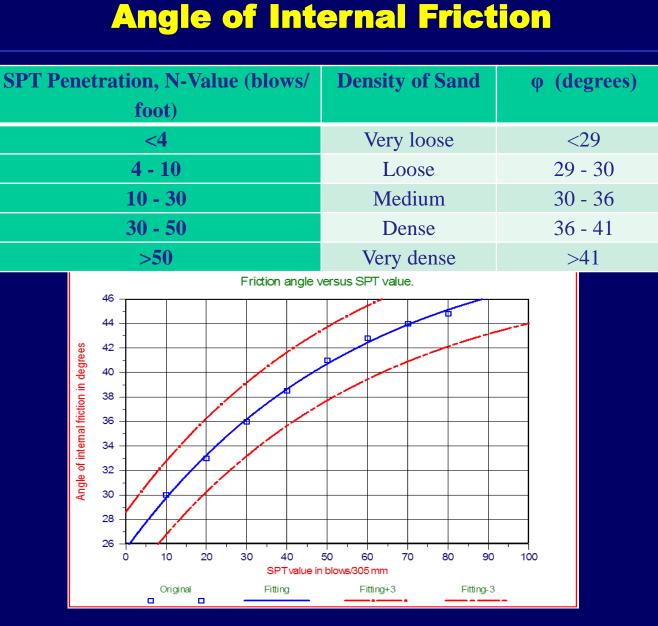
Introduction Soil Mechanics

Sand, Gobi Dessert

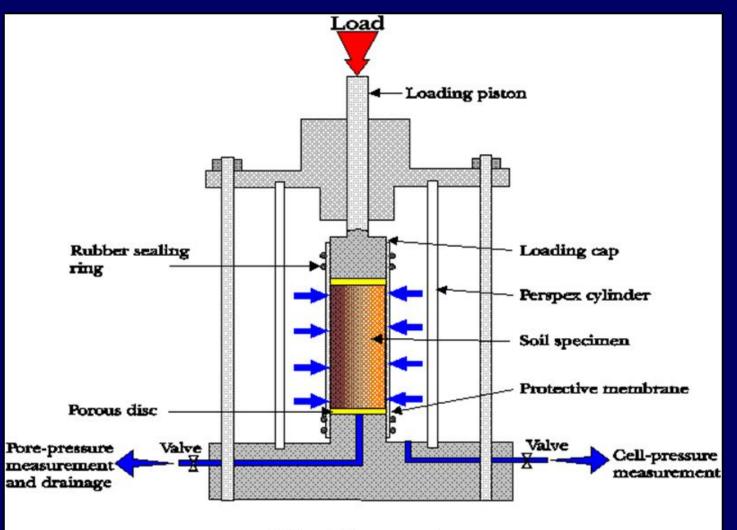
Quaternary Clay in Estonia

Rock


Soil Mechanical Parameters



Mass Volume Relations



Density Solids Porosity Bulk Density

Tri-axial Test

Triaxial apparatus

Delft

Delft University of Technology Offshore & Dredging Engineering

Angle of External Friction

20 °	steel piles (NAVFAC)
$0.67 \cdot \phi - 0.83 \cdot \phi$	USACE
20 °	steel (Broms)
$\frac{3}{4} \cdot \varphi$	concrete (Broms)
$\frac{2}{3} \cdot \varphi$	timber (Broms)
$0.67 \cdot \phi$	Lindeburg
$\frac{2}{3} \cdot \varphi$	for concrete walls (Coulomb)

Cohesion/Adhesion

SPT Penetration	Estimated	U.C.S.(kPa)		
(blows/ foot)	Consistency			
<2	Very Soft	<24		
2 - 4	Soft	24 - 48		
4 - 8	Medium	48 - 96		
8 - 15	Stiff	96 - 192		
15 - 30	Very Stiff	192 – 388		
>30	Hard	>388		

Permeability

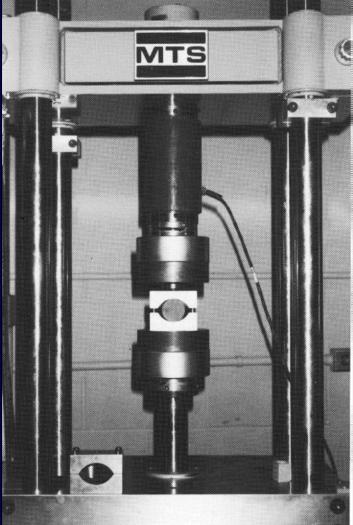
k (cm/s)	102	10 ¹	100=1	10	-1 1	0-2	10-3	10-4	10-5	10-6	10-7	10-8	1970/00	222.0.0 A
k (ft/day)	105	10,000	1,000	10	0 1	0	1	0.1	0.01	0.001	0.0001	10-5	10-6	10 ⁻⁷
Relative Permeability	Pervious					Semi-Pervious				Impervious				
Aquifer			Good	d		Poor					None			
Unconsolidated Sand & Gravel	10000	Il SortedWell Sorted Sand or Sand & GravelVery Fine Sand, Silt, Loess, Loam												
Unconsolidated Clay & Organic						Pe	at	at Layered Clay			Fat / Unweathered Clay			
Consolidated Rocks	Highly Fractured Rocks			s			esh Istone	Fresh Limestone, Dolomite		Contraction of the				
Permeability	Pervious				Sen	Semi-Pervious				Impervious				
Unconsolidated Sand & Gravel		Sorted ravel		Sorted			-	Very Fine Sand, Silt, Loess, Loam						
Unconsolidated Clay & Organic					Peat	Peat Layered (Clay	Unweathered Clay				
Consolidated Rocks	Highly Fractured Rocks Oil			Oil I	il Reservoir Rocks			Fresh Sandstone		Fresh Limestone, Dolomite		Fre Grai	1 Caler	
K (cm ²)	0.001	0.0001	10-5	10-6	10-7		10^{-8}	10-9	10-10	10-11	10-12	10-13	10-14	10^{-15}
K (millidarcy)	10+8	10+7	10+6	10+5	10,0	00	1,000	100	10	1	0.1	0.01	0.001	0.0001

Faculty of 3mE - Dredging Engineering

″UDelft

Delft University of Technology Offshore & Dredging Engineering

Unconfined Compressive Stress

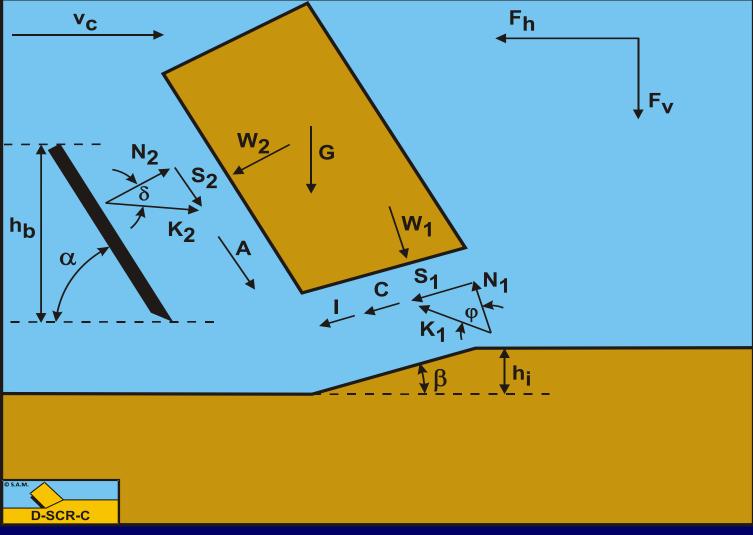


TUDelft

Delft University of Technology Offshore & Dredging Engineering

Cutting Forces Generic Model

Forces on the Layer Cut


- G: Gravity Force Weight of the Soil Cut
- I: Inertial Force Acceleration Force
- N: Normal Force Resulting from Normal Stress
- S: Friction Force Resulting from Frictional Stress
- K: Vectorial Sum Normal Force + Friction Force
- C: Cohesive Force Resulting from Shear Strength
- A: Adhesive Force Resulting from Sticky Effect
- W: Pore Pressure Force Resulting from Pore Pressures

elft

Delft University of Technology Offshore & Dredging Engineering

Forces on the Layer Cut

Resulting Equations

$$K_{2} = \frac{W_{2} \cdot \sin(\alpha + \beta + \varphi) + W_{1} \cdot \sin(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$
$$+ \frac{G \cdot \sin(\beta + \varphi) + I \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$
$$+ \frac{C \cdot \cos(\varphi) - A \cdot \cos(\alpha + \beta + \varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_{h} = -W_{2} \cdot \sin(\alpha) + K_{2} \cdot \sin(\alpha + \delta) + A \cdot \cos(\alpha)$$

$$F_{v} = -W_{2} \cdot \cos(\alpha) + K_{2} \cdot \cos(\alpha + \delta) - A \cdot \sin(\alpha)$$

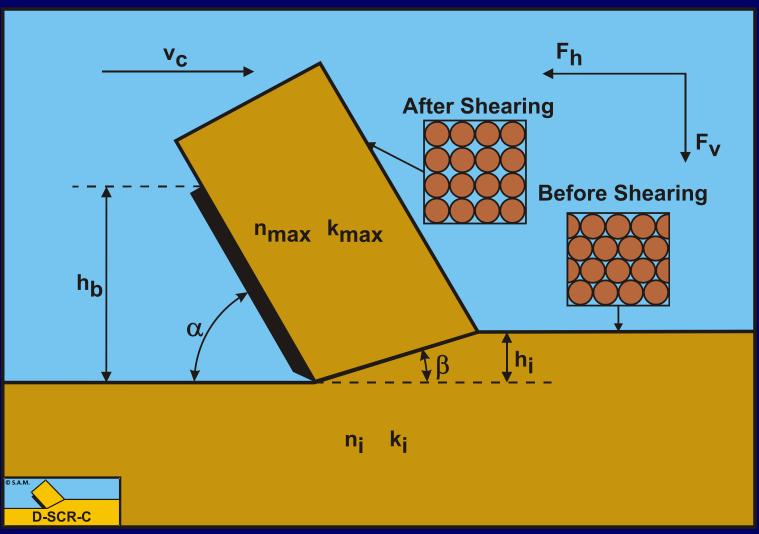
Faculty of 3mE - Dredging Engineering

Which Terms in Which Soil

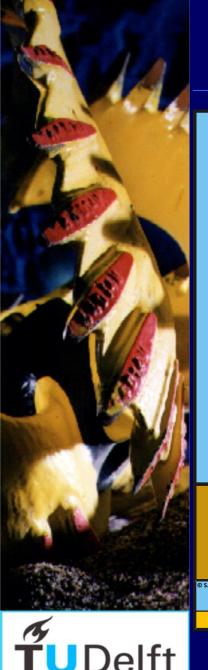
	Gravity	Inertia	Pore Pressure	Cohesion	Adhesion	Friction	
Dry sand							
Saturated sand							
Clay							
Atmospheric rock							
Hyperbaric rock							

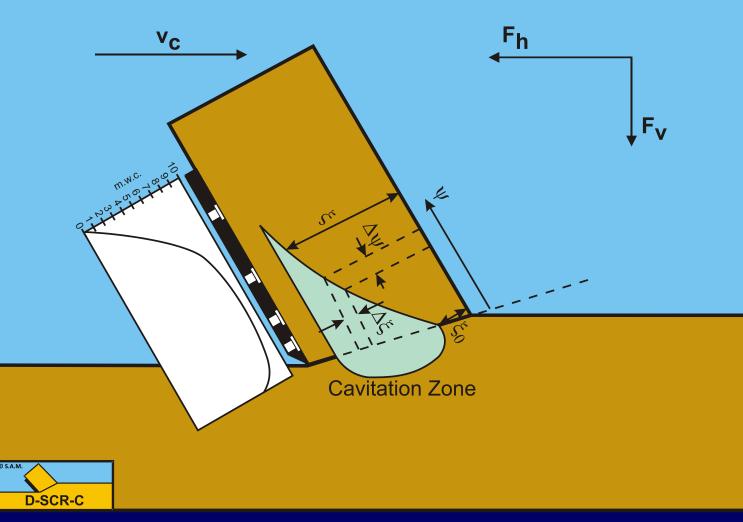
Saturated Sand

Saturated Sand Resulting Equations


$$K_{2} = \frac{W_{2} \cdot \sin(\alpha + \beta + \varphi) + W_{1} \cdot \sin(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_h = -W_2 \cdot \sin(\alpha) + K_2 \cdot \sin(\alpha + \delta)$$


$$F_{v} = -W_{2} \cdot \cos(\alpha) + K_{2} \cdot \cos(\alpha + \delta)$$

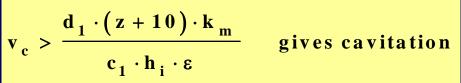

Saturated Sand Dilatation

Cavitation

© 5.74.101

Delft University of Technology – Offshore & Dredging Engineering

Saturated Sand Cutting Equations


Non-Cavitating Equations

$$\mathbf{F}_{h} = \frac{\mathbf{c}_{1} \cdot \boldsymbol{\rho}_{w} \cdot \mathbf{g} \cdot \mathbf{v}_{c} \cdot \mathbf{h}_{i}^{2} \cdot \mathbf{w} \cdot \boldsymbol{\varepsilon}}{\mathbf{k}_{m}}$$
$$\mathbf{F}_{v} = \frac{\mathbf{c}_{2} \cdot \boldsymbol{\rho}_{w} \cdot \mathbf{g} \cdot \mathbf{v}_{c} \cdot \mathbf{h}_{i}^{2} \cdot \mathbf{w} \cdot \boldsymbol{\varepsilon}}{\mathbf{k}_{m}}$$

Cavitating Equations $F_{h} = d_{1} \cdot \rho_{w} \cdot g \cdot (z + 10) \cdot h_{i} \cdot w$ $F_{w} = d_{2} \cdot \rho_{w} \cdot g \cdot (z + 10) \cdot h_{i} \cdot w$

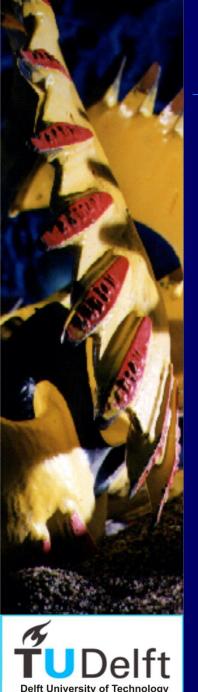
$$\mathbf{r}_{\mathbf{v}} = \mathbf{u}_{2} \mathbf{p}_{\mathbf{w}} \mathbf{s} (2 + 2 \mathbf{v}) \mathbf{u}_{1}^{2}$$

Cavitation Transition

Saturated Sand Specific Energy

$$\mathbf{E}_{sp} = \frac{\mathbf{P}_{c}}{\mathbf{Q}_{c}} = \frac{\mathbf{F}_{h} \cdot \mathbf{v}_{c}}{\mathbf{h}_{i} \cdot \mathbf{w} \cdot \mathbf{v}_{c}} = \mathbf{d}_{1} \cdot \boldsymbol{\rho}_{w} \cdot \mathbf{g} \cdot (\mathbf{z} + \mathbf{10})$$

$$Q_{c} = \frac{P_{c}}{E_{sp}} = \frac{P_{c}}{d_{1} \cdot \rho_{w} \cdot g \cdot (z + 10)}$$



Saturated Sand, the Factors c_1 , c_2 , d_1 , d_2

A ssum in g:
$$\delta = \frac{2}{3} \cdot \varphi$$
 and $h_b / h_i = 3$
SPT₁₀ = $\frac{1}{(0.646 + 0.0354 \cdot z)} \cdot SPT_z$
 $\varphi = 51.5 - 25.9 \cdot e^{-0.01753 \cdot SPT_{10}}$
C₁ = 0.0593 $\cdot e^{0.0692 \cdot \varphi}$
C₂ = -0.3785 + 0.0250 $\cdot \varphi$ - 0.000445 $\cdot \varphi^2$
d₁ = 0.3889 $\cdot e^{0.0680 \cdot \varphi}$

 $d_2 = +1.4708 - 0.0685 \cdot \phi$

Offshore & Dredging Engineering

Example Saturated Sand Cutting

 $d_1 = 0.3889 \cdot e^{0.0680 \cdot \varphi}$

Suppose
$$\varphi = 40 \implies d_1 = 5.9$$

$$E_{sp} = 5.9 \cdot \rho_w \cdot g \cdot (z + 10) = 59 \cdot (z + 10)$$

Suppose installed cutter power 2 M W

Production at 10 m water depth = $\frac{2000}{59 \cdot (10 + 10)}$ = 1.69 m³/s

Production at 30 m water depth = $\frac{2000}{59 \cdot (30 + 10)} = 0.85 \text{ m}^3 / \text{s}$

Clay Cutting

Delft University of Technology – Offshore & Dredging Engineering

Resulting Equations, Clay Cutting

$$K_{2} = \frac{C - A \cdot \cos(\alpha + \beta)}{\sin(\alpha + \beta)}$$

$$F_h = K_2 \cdot sin(\alpha) + A \cdot cos(\alpha)$$

$$\mathbf{F}_{v} = \mathbf{K}_{2} \cdot \cos(\alpha) - \mathbf{A} \cdot \sin(\alpha)$$

$$C = \frac{c \cdot h_i \cdot w}{\sin(\beta)}$$

$$\mathbf{h} = \frac{\mathbf{a} \cdot \mathbf{h}_{b} \cdot \mathbf{w}}{\sin(\alpha)}$$

A

Resulting Equations, Clay Cutting

$$F_{h} = \left\{ \frac{c_{d} \cdot h_{i}}{\sin(\beta) \cdot \sin(\alpha + \beta)} + \frac{a \cdot h_{b} \cdot \sin(\beta)}{\sin(\alpha) \cdot \sin(\alpha + \beta)} \right\} \cdot w$$

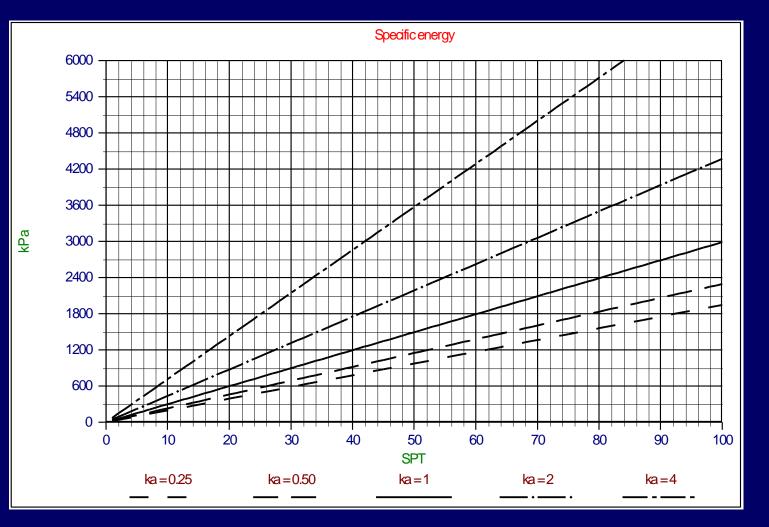
$$\mathbf{k}_{a} = \frac{\mathbf{a}_{d} \cdot \mathbf{h}_{b}}{\mathbf{c}_{d} \cdot \mathbf{h}_{i}}$$

$$\mathbf{F}_{\mathbf{h}} = \left\{ \frac{1}{\sin\left(\beta\right) \cdot \sin\left(\alpha + \beta\right)} + \frac{\mathbf{k}_{a} \cdot \sin\left(\beta\right)}{\sin\left(\alpha\right) \cdot \sin\left(\alpha + \beta\right)} \right\} \cdot \mathbf{c}_{d} \cdot \mathbf{h}_{i} \cdot \mathbf{w}$$

Delft University of Technology Offshore & Dredging Engineering

Forces in Clay, SPT Relation

$$\mathbf{c}_{\mathrm{d}} = \mathbf{c}_{\mathrm{y}} + \mathbf{c}_{0} \cdot \ln \left(\begin{array}{c} \cdot \\ 1 + \frac{\varepsilon}{\cdot} \\ \varepsilon_{0} \end{array} \right) \approx 2 \cdot \mathbf{c}_{\mathrm{y}}$$


$$c_y \approx 6 \cdot SPT \implies c_d \approx 12 \cdot SPT$$

$$\mathbf{E}_{sp} = \frac{\mathbf{F}_{h} \cdot \mathbf{v}_{c}}{\mathbf{h}_{i} \cdot \mathbf{w} \cdot \mathbf{v}_{c}} \qquad \mathbf{Q} = \frac{\mathbf{P}}{\mathbf{E}_{sp}}$$

$$E_{sp} = \left\{ \frac{1}{\sin(\beta) \cdot \sin(\alpha + \beta)} + \frac{k_a \cdot \sin(\beta)}{\sin(\alpha) \cdot \sin(\alpha + \beta)} \right\} \cdot 12 \cdot SPT$$

Specific Energy in Clay, 60 Degree Blade

Faculty of 3mE - Dredging Engineering

Example Clay Cutting

Suppose cohesion c=60 kPa and adhesion a=40 kPa. This gives a dynamic cohesion $c_d = 120$ kPa and adhesion $a_d = 80$ kPa. The blade height h_b and layer thickness h_i are the same. The k_a factor is 80/120=0.67. The SPT value is the cohesion divided by 6 giving SPT=10. Reading from the graph gives a specific energy of about 300 kPa. This gives a production of 3.33 m³ / s per MW installed power.

Suppose cohesion c=300 kPa and adhesion a=30 kPa. This gives a dynamic cohesion $c_d = 600$ kPa and adhesion $a_d = 60$ kPa. The blade height h_b is 2.5 times the layer thickness h_i . The k_a factor is $60 \cdot 2.5/600 = 0.25$. The SPT value is the cohesion divided by 6 giving SPT=50. Reading from the graph gives a specific energy of about 900 kPa. This gives a production of 1.11 m³ / s per MW installed power.

Rock Cutting

Delft University of Technology – Offshore & Dredging Engineering

elft

Resulting Equations

$$K_{2} = \frac{C \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

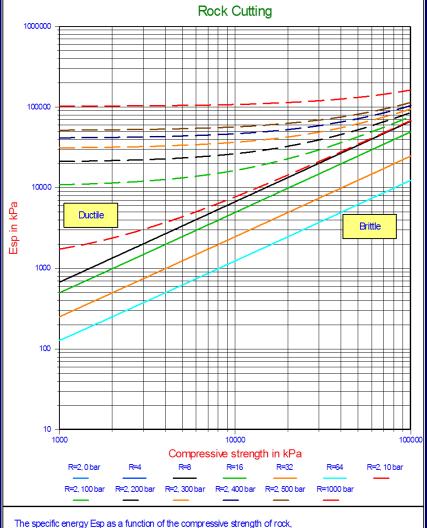
$$F_h = K_2 \cdot \sin(\alpha + \delta)$$

$$F_{v} = K_{2} \cdot \cos(\alpha + \delta)$$

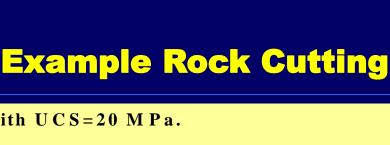
Hyperbaric Rock Cutting

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology Offshore Engineering


Resulting Equations

$$K_{2} = \frac{W_{2} \cdot \sin(\alpha + \beta + \varphi) + W_{1} \cdot \sin(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$
$$+ \frac{C \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$
$$F_{h} = -W_{2} \cdot \sin(\alpha) + K_{2} \cdot \sin(\alpha + \delta)$$
$$F_{v} = -W_{2} \cdot \cos(\alpha) + K_{2} \cdot \cos(\alpha + \delta)$$



Delft University of Technology Offshore & Dredging Engineering

Specific Energy 60 Degrees

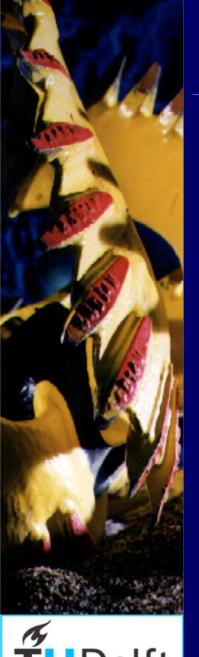
for different ratio's between the compressive strength and the tensile strength. For a 60 degree blade.

Atmospheric rock cutting:

Suppose a rock with UCS=20 MPa.

If the BTS (tensile strength) is small, for example 1 MPa the cutting process is brittle tensile giving a specific energy of 2.5-5 M Pa. This gives a production of $0.2-0.4 \text{ m}^3$ / s per MW installed cutter power. If the tensile strength is high, for example 5 MPa the cutting process is brittle shear giving a specific energy of 10 M Pa. This gives a production of 0.1 m³ / s per MW installed cutter power.

Hyperbaric rock cutting:


Offshore & Dredging Engineering

The tensile strength does not play a role, only the water depth. At a waterdepth of 1000 m the specific energy is about 20 MPa. This gives a production of 0.05 m^3 / s per MW installed cutter power. At a waterdepth of 2000 m the specific energy is about 30 M Pa. This gives a production of 0.033 m^3 / s per MW installed cutter power.

Limitations

Delft University of Technology – Offshore & Dredging Engineering

elft

Delft University of Technology Offshore & Dredging Engineering

Limitations of the Method

- The production determined is only based on the available cutting power.
- The production has to fit through/in the cutting device, for example the cutterhead, the draghead, the clamshell, the backhoe, etc.
- The required forces/power have/has to be available, for example the swing winch forces/power (CSD) or the propulsion power (TSHD).
- The production determined has to match the slurry transport in case of a CSD or TSHD.

Conclusions

- The specific energy is a convinient tool to determine the dredging production.
- However there are some limitations to this method.
- If there is a limitation to the production because of other reasons, this limitation should be applied.

Delft University of Technology – Offshore & Dredging Engineering

Questions?